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Abstract

This paper presents a methodology to combine stochastic Lagrangian approach and continuum model to simulate the
dispersed phase in gas-particle turbulent flows using that both approaches are based on the same Boltzmann-like kinetic
equation governing the joint fluid-particle probability density function (pdf). The proposed hybrid method is based on the
separate application of each approach in two adjacent domains and their coupling at the interface via flux boundary con-
ditions. Validation of the method is carried out for non-colliding solid particles suspended in homogeneous turbulent shear
flow without two-way coupling.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Gas-particle flows are found in a very wide range of applications, from industrial (fluidized bed, turboma-
chines) to natural (pollutant dispersion, sand transport) processes. This diversity has led to an extended zool-
ogy of formalisms to model such flows (Mashayek and Pandya, 2003). It is thus unsurprising that numerical
treatments vary from one problem to another. Actually, when dealing numerically with gas-particle flows it is
usual to choose from a variety of approaches the one that better suits the problem. The choice extends from
direct numerical simulation/discrete particle system (DNS/DPS) models to two-fluid models, each formalism
accounting for different levels of description. Naturally, the more accurate the description, the more expensive
the simulations.
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The dispersed phase Lagrangian approaches, from deterministic Lagrangian (DPS) coupled with a DNS for
the fluid phase (Squires and Eaton, 1990, 1991; Elghobashi and Truesdell, 1992; Sundaram and Collins, 1997)
to stochastic Lagrangian (Gosman and Ioannides, 1981; Sommerfeld and Zivkovic, 1992) coupled with RANS
equations for the fluid phase, simulate the behavior of particles following their trajectories. These approaches
take place at a mesoscopic level, allowing ‘‘direct’’ accounting in the simulations of physical phenomena like
rebound, coalescence, break-up, etc. (Sommerfeld, 1999). However, the simulations are limited by the amount
of tracked particles, which make deterministic Lagrangian approaches not suited for spatially complex and/or
extended flows. The stochastic Lagrangian approaches, which aim to approximate a probability density func-
tion (pdf) which contains the one-point statistical information on the system (Mc Innes and Bracco, 1992;
Sommerfeld et al., 1993), are a fair attempt to reduce this drawback, but nevertheless inherit the limitations
imposed by computer resources.

In such situations, one would prefer to use coarser descriptions like continuum models (also called Eule-
rian). The two phases are then treated as separate interpenetrating continua, and mean equations are solved
for both phases and coupled through interphase transfer terms (Elghobashi and Abou-Arab, 1983; Chen and
Wood, 1986). Among these Eulerian approaches, pdf based methods consider a few of low order moments of
the pdf, limiting the accuracy of such approaches (Derevich and Zaichik, 1988; Reeks, 1991; Simonin, 1991).
This choice is motivated by computational efficiency as it is well known that good accuracy can be reached at
low computational costs by such methods where the flow can be considered near equilibrium. It is however
not fully justified to use closure laws in non-equilibrium zones occurring, for example, when the particle relax-
ation time and particle–particle collision time are locally larger than the mean and turbulent gas flow char-
acteristic times (He and Simonin, 1993; Wang et al., 1998; Sakiz and Simonin, 1999). In addition, specific
problems such as particle–wall interactions or jets-crossing are known to be very difficult to handle in an
Eulerian framework.

When comparing the approaches (both Lagrangian and Eulerian) derived from the pdf point of view, the
first remark is that they are consistent with each other, which is made especially clear by the kinetic derivation
of the Eulerian equations (Reeks, 1991; Pope, 1994; Simonin, 1996). Another important remark is their com-
plementarity: whereas pdf Eulerian approaches are really computationally efficient but do not allow to pre-
cisely account for complex phenomena, the stochastic Lagrangian approaches allow these accounts as a
counterpart of expensive simulations. The drawbacks of one family is precisely the advantages of the other
one.

A very similar complementarity is also encountered in rarefied gas dynamics as the Navier–Stokes equa-
tions and Monte-Carlo methods rely on the same Boltzmann kinetic equation. The computation of atmo-
sphere re-entry vehicles flows can then be resolved by coupling kinetic and fluid equations in separate
domains (Schneider, 1996; Le Tallec and Mallinger, 1997; Schwartzentruber and Boyd, 2006). This type of
method, referred in the following as hybrid method, is also developed in micro- and nano-fluid flows where
molecular dynamics approaches are coupled with continuum fluid dynamics approaches (O’Connell and
Thompson, 1995; Nie et al., 2004; Werder et al., 2005). Another example of multi-level description based
on a pdf point of view, although the domains are not separated, can be found in the prediction of reactive
turbulent flows (Muradoglu et al., 1999).

Like in the above-mentioned flows, the physical phenomena that the continuum approach fail to account
for typically occur near the walls or in particle-rarefied zones. By using a continuum approach in the core of
the flow and a particle one in the non-equilibrium regions (to account for Knudsen effects, rough wall bounc-
ing, deposition, splashing . . .), a hybrid simulation would use the continuum approach wherever possible (thus
saving computer costs) while allowing to incorporate the preceding physical phenomena with the particle
approach where it is needed.

This paper is thus dedicated to the development of a hybrid method coupling a particle (stochastic
Lagrangian) and a continuum (Eulerian moment method) approach to simulate the dispersed phase in turbu-
lent gas–solid flows. The spatial domain is split into two regions: Xlag where the particulate flow is simulated in
the Lagrangian framework and Xeul where the flow is simulated in the Eulerian framework. The spatial
decomposition presented in this paper concerns non-overlapping regions presented in Fig. 1. We limit the
study to the case of monodispersed solid particles suspended in air (Simonin et al., 1995). For the sake of sim-
plicity, but without loss of generality, we will neglect two-way coupling and particle–particle collisions.
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Fig. 1. Partitioning of the computational domain in Eulerian (Xeul) and Lagrangian (Xlag) domains.
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The article is structured as follow. First, both the stochastic Lagrangian and Eulerian approaches are pre-
sented in the scope of a joint fluid-particle pdf approach of the dispersed phase. A coupling methodology asso-
ciated to this new hybrid method is then proposed, based on a coupling by half-fluxes and associated with the
hypothesis of a joint fluid-particle pdf of the Gaussian form. The consistency of the two approaches (Eulerian
and stochastic Lagrangian) is then proved in a simplified case to ensure that the coupling methodology pro-
posed is relevant in turbulent gas-particle flows. Finally, the application of the full hybrid method is carried
out in the case of a homogeneous turbulent shear flow with non-overlapping domains.

2. Statistical description of gas–solid flows

Inspired by the statistical modeling of mono-atomic gases (Grad, 1949), early formalisms in gas–solid flows
have represented the dispersed phase in terms of probabilities. The particle phase is described thanks to a
probability density function (pdf) fpðcp; x; tÞ. This description was extended by several authors (Buyevich,
1971; Reeks, 1980; Derevich and Zaichik, 1988) to account for the modulation of the particle motion by
the fluid turbulence. In particular, Simonin (1996) added to the relevant variables the fluid velocity seen by
the particles. Following, a joint fluid-particle pdf ffp was introduced: ffpðcf ; cp; x; tÞdcf dcp dx is the probable
number of particles at time t, with center of mass xp 2 ½x; xþ dx�, velocity up 2 ½cp; cp þ dcp�, and viewing a
fluid velocity ~uf 2 ½cf ; cf þ dcf �. It can be shown that ffp obeys a Boltzmann-like equation:
offp

ot
þ o

oxi
½cp;iffp� ¼ �

o

ocp;i

dup;i

dt

����cf ; cp; x
� �

ffp

� �
� o

ocf;i

d~uf ;i

dt

����cf ; cp; x
� �

ffp

� �
þ offp

ot

� �
coll

: ð1Þ
The first term on the right-hand side involves the operator
dup;i

dt

���cf ; cp; x
D E

which accounts for the influence of

the particle acceleration on ffp. The second term involves the operator representing the influence of the fluid
velocity acceleration along particle paths. Both of these terms involve a conditional statistical average
h� j cf ; cp; xi conditioned by the position, velocity and seen fluid velocity of any particle: xp ¼ x; up ¼ cp and
~uf ¼ cf .

Finally, the last term accounts for the modification of ffp by inter-particle collisions and can be modeled
using an extended kinetic theory formalism which takes into account the correlations stemming from the tur-
bulence (Simonin et al., 2002). The main effect, in turbulent shear flow, is a reduction of the anisotropy of the
particle fluctuating motion. However, the collisions do not influence the numerical treatment of the direct cou-
pling between Lagrangian and Eulerian approaches and then will be omitted in this work.

The statistical description of the gas–solid flow is then complete when models for the particle acceleration
and fluid velocity acceleration along the particle path are chosen. These models, which will be used by both the
Lagrangian and Eulerian approaches, are described below.

2.1. Particle acceleration

Our study considers spherical solid particles with diameter dp comparable to the Kolmogorov length scale
of the fluid gK and high density (q) ratio: qp � pf (subscript f refers to the fluid and p for the particles). In such
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flows the particle response time sp is much larger than the Kolmogorov time scale sK : sp � sK. In the case of
non-settling particles (gravity is neglected) the main force that influence the particle motion is then the drag
force F d, which is acting at the center of mass (Kim et al., 1998). With up the particle translation velocity and
~uf the fluid velocity seen by the particle, the evolution equation for the particle velocity reads:
dup;i

dt
¼ F d;i

mp

¼ � up;i � ~uf ;i

sp

; ð2Þ
where sp is the particle relaxation time that stems from the drag:
spðjup � ~uf jÞ ¼
4

3

qp

qf

dp

CDjup � ~uf j
: ð3Þ
CD is the drag coefficient, given by Schiller and Nauman (1935) as:
CD ¼
24

Rep

ð1þ 0:15Re0:687
p Þ; ð4Þ
where Rep is the particle Reynolds number (m) denotes the kinematic viscosity):
Rep ¼
dpjup � ~uf j

mf

: ð5Þ
2.2. Fluid velocity acceleration along particle paths

The Lagrangian modeling of the fluid velocity along trajectories was thoroughly studied in single phase
flows by Pope (1985,1994). This approach was extended to turbulent gas-particle flows by Simonin et al.
(1993) to account for the inertia of the particles (and thus relative velocity). They proposed the following
Langevin equation for the fluid velocity along the particle path (assuming summation over repeated indices):
d~uf ;i ¼ �
1

qf

oP f

oxi
� mfr2U f ;i

� �
dt þ ðup;k � ~uf ;kÞ

oU f ;i

oxk
dt þ Gfp;ikð~uf;k � U f;kÞdt þ H fpdW fp;i; ð6Þ
where Pf denotes the mean pressure and U f the mean velocity of the fluid. dW fp is a Wiener process, associated
with the coefficient Hfp which is linked to the fluid turbulence statistics. In the very low inertia limit case, one
has to impose H fp ¼

ffiffiffiffiffiffiffiffiffi
C0ef

p
, with C0 the Kolmogorov’s constant ðC0 ¼ 2:1Þ; ef denoting the dissipation. Gfp is a

tensor also linked to the fluid turbulence viewed by the particles. The modeling of this tensor is prominent in
the behavior of the dispersed phase. Simonin et al. (1993) proposed several models, including crossing trajec-
tory effect induced by a mean drift between the two phases. In this study, for the sake of simplicity, a spherical
form without crossing trajectory effect is assumed:
Gfp;ik ¼ �
dik

st
fp

; ð7Þ
where the characteristic time scale of the ‘‘seen’’ fluid turbulence (eddy–particle interaction time) st
fp is given in

terms of the Lagrangian fluid turbulent characteristic time scale of the fluid st
f (which is given in terms of Eule-

rian variables):
st
fp ¼ st

f ¼
1

b1

kf

ef

; ð8Þ
where b1 ¼ 1
2
þ 3

4
C0 (b1 ¼ 3

4
C0 in forced homogeneous isotropic flows) and kf is the turbulent kinetic energy.

A more practical way to deal with Eq. (6) is to introduce the fluctuation of the seen fluid velocity
u0f ¼ ~uf � U f around the mean fluid velocity. Introducing the fluid Reynolds stresses Rff ;ik, this mean fluid
velocity evolves by:
oU f ;i

ot
þ U f ;k

oU f ;i

oxk
¼ � 1

qf

oP f

oxi
þ mfr2U f ;i �

oRff ;ik

oxk
: ð9Þ
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Then, using Eqs. (9) and (6) can be written:
du0f ;i ¼
oRff;ik

oxk
dt þ Aiku0f;k dt þ

ffiffiffiffiffiffiffiffiffi
C0ef

p
dW fp;i; ð10Þ

Aik ¼ �
dik

st
fp

� oU f ;i

oxk
: ð11Þ
It should be pointed out that a basic assumption of the proposed model derivation (Simonin et al., 1993) is to
insure that the second order fluid velocity correlations sampled by the particles eRff;ij are equal to the fluid
Reynolds stresses Rff ;ij:
eRff ;ijðx; tÞ ¼ Rff ;ijðx; tÞ: ð12Þ
2.3. Pdf transport equation closures

Owing the closure assumptions given in the preceding paragraphs for the particle acceleration and fluid
velocity acceleration along particle paths, the terms on the rhs of Eq. (1) are written:
o

ocp;i

dup;i

dt
jcf ; cp; x

� �
ffp

� �
¼ o

ocp;i
� cp;i � cf ;i

sp

ffp

� �
; ð13Þ

o

ocf ;i

d~uf ;i

dt
jcf ; cp; x

� �
ffp

� �
¼ o

ocf ;i
� 1

qf

oP f

oxi
þ mfr2U f;i

� �
ffp

� �
þ o

ocf;i
cp;k

oU f;i

oxk
ffp

� �
þ o

ocf ;i
½Aikðcf;k � U f ;kÞffp� �

o2

ocf ;iocf;i

1

2
H 2

fpffp

� �
: ð14Þ
There are several ways to solve Eq. (1) supplemented with Eqs. (13) and (14), depending on the required level
of description. One could choose to use a stochastic representation of Eq. (1) to compute the flow via a sto-
chastic Lagrangian approach, which can give (in theory) any one-point moment of the dispersed phase. As
said before, a few pdf moments can also be computed using Eulerian transport equations.

3. Stochastic Lagrangian approach

Although the fluid is described only in terms of the macroscopic variables kf and st
fp (which is much cheaper

than DNS or LES), the usual scales for the particle number density in gas–solid flows ðnp / 105=cm3Þ require
the use of non-deterministic techniques to make Lagrangian simulations more efficient. For that reason
researchers have extensively used the statistical representation of the dispersed phase since Gosman and Ioan-
nides (1981). This statistical representation allows to work with a limited number of ‘‘numerical particles’’
(also called parcels) representing a set of real particles. Each numerical particle is affected with a ‘‘weight’’
j, j being the number of real particles represented by a numerical one. From a mathematical point of view,
the pdf ffp is approximated by a sum of Dirac masses:
ffpðcp; cf ; x; tÞ ¼
XNp

m¼1

jmd½x� xðmÞp ðtÞ�d½cp � uðmÞp ðtÞ� � d½cf � ~uðmÞf ðtÞ�: ð15Þ
Np is the total number of numerical particles, and can be as small as wanted (the lower limit arising from
statistical considerations).

Then solving Eq. (1) (closed with (13) and (14)), in absence of collisions, is equivalent to the Lagrangian
equation set based on (2) and (10). Each numerical particle variables ðxp; up; u0fÞ obey the following equations:
dxðmÞp;i

dt
¼ uðmÞp;i ; ð16Þ

duðmÞp;i

dt
¼ �

uðmÞp;i � U f ;i � u0ðmÞf ;i

sðmÞp

; ð17Þ

du0ðmÞf ;i ¼
oRff ;ik

oxk
dt þ Aiku0ðmÞf ;k dt þ H fpdW ðmÞ

fp;i ; ð18Þ
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where the terms U f ;i;
oRff ;it

oxk
;Aik and Hfp represent the projection of the fluid variable fields at the location of the

particle.

4. Eulerian approach

Eulerian variables may be obtained by statistical averages of the Lagrangian particle properties over an
infinity of independent realizations of the flow. According to the definition of ffp, ensemble averaging of
any function of the particle and fluid ‘‘seen’’ velocities is equivalent to integration over the whole particle
and fluid velocity-space. Then the particle Eulerian variables corresponding to the zero, first and second order
moments of the particle velocity distribution are written:
npðx; tÞ ¼
Z

ffpðcf ; cp; x; tÞdcf dcp; ð19Þ

npUp;iðx; tÞ ¼
Z

cp;iffpðcf ; cp; x; tÞdcf dcp; ð20Þ

npRpp;ijðx; tÞ ¼
Z
ðcp;i � U p;iÞðcp;j � U p;jÞffpðcf ; cp; x; tÞdcf dcp; ð21Þ
where np is the particle mean number density, U p is the particle mean velocity and Rpp the particle kinetic stress
tensor. For simplicity the field variables ðx; tÞ could later be omitted.

4.1. Particle moment equations

By integration of Eq. (1) over the possible particle and fluid velocities, the mean number density conserva-
tion equation is obtained as:
o

ot
ðnpÞ þ

o

oxi
ðnpUp;iÞ ¼ 0: ð22Þ
To obtain the momentum balance equations, Eq. (1) �cp;i is integrated over the particle and seen fluid veloc-
ity-spaces. The term stemming from the drag force is nphF d;i=mpip with F d the drag force experienced by a sin-
gle particle, and hip is the average operator over the particle phase. Using Eqs. (2) and (22) the momentum
balance equations can be written:
np

DUp;i

Dt
¼ � o

oxk
½npRpp;ik� þ np

F d;i

mp

� �
p; ð23Þ
where D=Dt stands for the Lagrangian derivative with respect to the particle Eulerian velocity field, i.e.
D

Dt
� o

ot
þ U p;k

o

oxk
: ð24Þ
The closure of Eq. (23) requires the knowledge of the second-order particle velocity correlation Rpp;ik. This can
be achieved by using a Boussinesq or gradient hypothesis and local equilibrium assumptions (Hinze, 1972) but
these approximations behave poorly as long as there exists production by mean velocity gradients and/or large
anisotropy of the fluctuating motion. Separate transport equations for the particle kinetic stresses are required
to predict such flows (Simonin, 1991; He and Simonin, 1993; Zaichik, 1999). These equations are obtained in
the same way as (23) by integration over the velocities-space of Eq. (1) �c00p;ic

00
p;jðc00p;i ¼ cp;i � Up;iÞ:
DRpp;ij

Dt
¼ Dp;ij þPp;ij þPp;ij: ð25Þ
The first term on the rhs of Eq. (25) represents the transport of the kinetic stresses by the particle velocity
fluctuations:
Dp;ij ¼ �
1

np

o

oxk
½npSppp;ijk�; ð26Þ
where the triple particle velocity correlations Sppp;ijk have to be modeled.
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The second term in the rhs of Eq. (25) represents the production of fluctuating motion by the mean particle
velocity gradient:
Pp;ij ¼ �Rpp;kj
oU p;i

oxk
� Rpp;ki

oUp;j

oxk
: ð27Þ
The last term represents the interaction of the fluid with the particles. This term is the turbulent momentum
transfer rate from the fluid turbulent motion:
Pp;ij ¼
F d;i

mp

u00p;j þ
F d;j

mp

u00p;i

� �
p

: ð28Þ
4.2. Additional Eulerian closure assumptions

Eqs. (22) and (25) are derived directly from the pdf Eq. (1) supplemented with (13) and (14) without any
additional assumption, but form a system with several unclosed terms. On one hand, specific to velocity
moment equations, interfacial transfer terms due to the drag force have to be written in terms of computed
Eulerian variables. On the other hand, triple velocity correlations appear in the second order moment trans-
port equations and represent the transport by the fluctuating velocity.

In order to simplify the closure of the interfacial transfer terms, Simonin (1991) proposed to approximate
the non-linear dependance of the drag on the relative velocity:
1

sp

½up;i � ~uf ;i�w
� �

p

¼ 1

sF
fp

h½up;i � ~uf ;i�wip; ð29Þ
where sF
fp is given by sF

fp ¼ spðhjup � ~uf jipÞ and w ¼ f1; u00p;jg.
This assumption is equivalent to replace the particle acceleration term closure (13) in the pdf Eq. (1) by:
o

ocp;i

dup;i

dt

����cf ; cp; x
� �

ffp

� �
¼ � 1

sF
fp

o

ocp;i
½ðcp;i � cf ;iÞffp�; ð30Þ
Eq. (29) is exact for very small particle Reynolds numbers Rep � 1 because sp is then independent of the rel-
ative velocity. For intermediate particle Reynolds number Rep 6 10 the closure is proven to accurately model
non-linear effects (Simonin et al., 1995; Wang et al., 1998). For larger particle Reynolds number, one has to
rely on an expansion in term of the instantaneous relative velocity to improve the consistency between the
Lagrangian and the Eulerian approaches in the treatment of the drag interaction terms (Sakiz and Simonin,
1998).

Therefore, using Eq. (29) the mean momentum transfer term is written:
np

F d;i

mp

� �
p

¼ � np

sF
fp

½Up;i � U f ;i � V d;i�; ð31Þ
where the fluid-particle turbulent drift velocity V d arises from the statistical bias in the sampling of the turbu-
lence by the particles (Simonin et al., 1993). In the frame of the joint fluid-particle approach, this velocity can
be written in terms of a moment of the pdf ffp:
V d;iðx; tÞ ¼ eU f;iðx; tÞ � U f ;iðx; tÞ; ð32Þ

np
eU f ;iðx; tÞ ¼

Z
cf ;iffp cf ; cp; x; t


 �
dcf dcp: ð33Þ
Thus the mean drag term depends on the mean fluid velocity sampled by the particles, which can be different
for the true mean fluid velocity.

Using (29), the particle–turbulence interaction Eq. (28) is written:
Pp;ij ¼ �
2

sF
fp

½Rpp;ij �Rfp;ij�; ð34Þ
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where Rfp, is the symmetric fluid-particle velocity correlation tensor defined from the fluid-particle velocity
correlation tensor Rfp:
Rfp;ij ¼
1

2
ðRfp;ij þ Rfp;jiÞ; ð35Þ

npRfp;ijðx; tÞ ¼
Z
ðcf ;i � eU f;iÞðcp;j � U p;jÞffpðcf ; cp; x; tÞdcf dcp: ð36Þ
Thus the behavior of the particle kinetic stresses is influenced by the local values of the fluid-particle correla-
tion Rfp;ij, the drag term leading either to production or destruction of the particle velocity fluctuations.

Similar to the approach of Hanjalic and Launder (1972), Simonin (2000) derived the triple particle velocity
correlation model from the corresponding transport equation obtained from (1), (13) and (14). Neglecting the
mean transport, the influence of the mean velocity gradient, and using a Gaussian approximation for the qua-
druple particle velocity correlations, the triple particle velocity correlations are written:
Sppp;ijk ¼ �Kp;lk
o

oxl
Rpp;ij � Kp;lj

o

oxl
Rpp;ki � Kp;li

o

oxl
Rpp;jk; ð37Þ

Kp;mn ¼
sF

fp

3
Rpp;mn þ Csb1s

t
fpRfp;mn; ð38Þ
where Cs ¼ 0:11 is chosen to insure consistency with single-phase turbulent closure model (Hanjalic and Laun-
der, 1972)) in the tracer limit case.

It is known that such model fails in non-equilibrium zones (Sakiz and Simonin, 1998). As the prediction of
the triple particle velocity correlations is of importance in inhomogeneous flows, the accuracy of (38) is a good
criterion to determine the location of the coupling interface.

4.3. Fluid-particle moment equations

According to 4.2 the final closure of the particle moment transport equations require the prediction of addi-
tional velocity moments: V d;i and Rfp;ij. Several attempts have been made to model these moments from the
local characteristics of the fluid (Derevich and Zaichik, 1988) but it seems better to directly solve their trans-
port equations (Simonin et al., 1993; Reeks, 2005). In the frame of a joint fluid-particle pdf approach, these
equations are directly deduced from (1), (13) and (14). Therefore the governing equation of the fluid-particle
turbulent drift velocity is obtained by integration of Eq. (1) �ðcf ;i � U f;iÞ over the whole particle and fluid
velocity-space:
DV d;i

Dt
¼ �Rfp;ik

np

onp

oxk
þ o

oxk
½Rff ;ik � Rfp;ik� þ AikV d;k: ð39Þ
Concerning the fluid-particle velocity correlations, their governing equations are obtained through integration
of Eq. (1) �c00f;ic

00
p;j (where c00f;i ¼ cf ;i � eU f;i). It reads:
DRfp;ij

Dt
¼ Dfp;ij þPfp;ij þPfp;ij þ efp;ij: ð40Þ
The first rhs term Dfp;ij represents the dispersion by the particle fluctuating velocity:
Dfp;ij ¼ �
1

np

o

oxk
ðnpSfpp;ijkÞ: ð41Þ
As for the particle kinetic stress equations these terms have to be closed. These are modeled in order to obtain
a Hanjalic–Launder like closure (Hanjalic and Launder, 1972) in the tracer limit case (Wang et al., 1998):
Sfpp;ijk ¼ �K fp;lk
o

oxl
Rfp;ij � K fp;lj

o

oxl
Rfp;ki � K fp;li

o

oxl
Rfp;jk; ð42Þ

K fp;mn ¼ Csb1s
t
fpRfp;mn: ð43Þ
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Pfp;ij represents the production of correlated motion by the mean velocity gradients (both particle and fluid):
Table
Disper

Lagra

•
dxðp

d

•
duðp

d

• du0f
Pfp;ij ¼ �Rfp;kj
oU f;i

oxk
� Rpp;kj

oV d;i

oxk
� Rfp;ik

oUp;j

oxk
: ð44Þ
Finally, Pfp;ij is the turbulent momentum transfer rate from the fluid turbulent motion to the correlated mo-
tion and is written using Eq. (29):
Pfp;ij ¼ �
1

sF
fp

Rfp;ij � eRff;ij

h i
: ð45Þ
Finally, efp;ij is a dissipation term directly proportional to Rfp;ijefp;ij ¼ � Rfp;ij

st
fp

.

5. Hybrid Eulerian–Lagrangian method

Sections 2–4 have given the general equation sets associated with stochastic Lagrangian and Eulerian
approaches (reminded in Table 1) which can be solved separately in two adjacent regions Xlag and Xeul (see
Fig. 1). The major problem in developing a hybrid method combining both the approaches is the exchange
of information between them. Then, the following section is dedicated to the description of the coupling meth-
odology developed at the interface of the two domains. By convention, the normal vector nðxÞ at the interface
C is directed from Xlag to Xeul as in Fig. 1.

In each domain the approximated pdf f̂ lag
fp and f̂ eul

fp are estimated according to the corresponding approach.
At the interface the pdf is given in the two halves of the particle velocity-space. For particles with cp � n < 0,
hence coming from the Eulerian region, the pdf is presumed according to the Eulerian moments at the inter-
face. For particles with cp � n > 0 the pdf is given by the Lagrangian calculation. The coupling is then enforced
by the interface boundary conditions (as formulated in Le Tallec and Mallinger, 1997):
f̂ lag
fp ðxC; tÞ ¼ f̂ eul

fp ðxC; tÞ for cp � n < 0; ð46Þ
f̂ eul

fp ðxC; tÞ ¼ f̂ lag
fp ðxC; tÞ for cp � n > 0; ð47Þ
which represent the fact that ‘‘particles’’ ingoing in each domain are also ‘‘particles’’ outgoing from the other
domain.

To implement the conditions (46) and (47) the fluxes across C need explicit formulations. The fluxes are
divided between ingoing and outgoing half-fluxes (from the Lagrangian point of view, see Fig. 1). For any
function W of the particle and fluid velocities:
FCðW; xC; tÞ ¼
Z
ðcp � nÞWðcp; cfÞffpðcf ; cp; xC; tÞdcf dcp; ð48Þ

¼Fþ
C ðW; xC; tÞ þF�

C ðW; xC; tÞ; ð49Þ
1
sed phase equation set

ngian domain Xlag Eulerian domain Xeul

mÞ
;i

t
¼ uðmÞp;i

mÞ
;i

t
¼ �

uðmÞp;i � U f ;i � u0ðmÞf ;i

sðmÞp

ðmÞ
;i ¼

oRf f ;ik

ok
dt þ Aiku0ðmÞf ;k dt þ

ffiffiffiffiffiffiffiffiffi
C0ef

p
dW ðmÞ

fp;i

•
onp

ot
¼ � o

oxk
ðnpUp;kÞ

•
DU p;i

Dt
¼ � 1

sF
fp

½Up;k � U f ;k � V d;k � �
1

np

onpRpp;ik

oxk

•
DRpp;ij

Dt
¼ Dp;ij þPp;ij þPp;ij

•
DV d;i

Dt
¼ �Rfp;ik

np

onp

oxk
þ oðRff;ik � Rfp;ikÞ

oxk
þ AikV d;k

•
DRfp;ij

Dt
¼ Dfp;ij þPfp;ij þPfp;ij
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where the outgoing half-flux is written:
Fþ
C ðW; xC; tÞ ¼

Z
cp �n>0

ðcp � nÞWðcp; cfÞffp dcf dcp; ð50Þ
and the ingoing half-flux:
F�
C ðW; xC; tÞ ¼

Z
cp �n<0

ðcp � nÞWðcp; cfÞffp dcf dcp: ð51Þ
5.1. Boundary condition for the Lagrangian approach

The treatment of the boundary condition (46) is made through the simulation of the half-flux
F�
C ðW; xC; tÞ ¼

Z
cp �n<0

ðcp � nÞWðcp; cfÞf̂ eul
fp dcf dcp: ð52Þ
The incident Eulerian pdf f̂ eul
fp is only known through a few first-order moments which are insufficient to fully

characterize the pdf. Accordingly, an approximate form of the pdf has to be presumed to simulate the incident
half-flux. The classical Maxwellian form cannot fit our problem due to the large anisotropy of the particle fluc-
tuating motion observed for inertial particles suspended in turbulent shear flows. To account for this anisotropy,
the best candidates are Grad’s expansion (Grad, 1949) and the anisotropic Gaussian distribution proposed by
Richman (1989). For large second-order moment tensor anisotropy, it is known that Grad’s expansion can lead
to negative non-physical values of the presumed pdf. In contrast, Richman’s form seems to be a satisfactory
approximation for particle pdf in shear flows (Boelle et al., 1995; Sakiz and Simonin, 1999). We now introduce
an extension of this form for joint fluid-particle pdf by defining the global correlation tensor R:
R ¼
Rpp Rfp

Rfp Rff

" #
; ð53Þ
and the global velocities c;U and c00 (t denotes transposition):
c ¼ tðtcp;
tcfÞ;U ¼ tðtUp;

t eU fÞ; and c00 ¼ c� U : ð54Þ

With these notations, Richman’s extended form for joint fluid-particle pdf reads:
f
^

fpðx; c; tÞ ¼
npðx; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p3 detðRÞ

q exp � 1

2
tc00 � R�1 � c00

� �
: ð55Þ
Unlike the Maxwellian form for monoatomic gas, there exists no mathematical argument to prove that this
pdf is solution of Eq. (1) at equilibrium, but Section 7 will show that this approximation is impressively accu-
rate up to second-order moments in homogeneous flows. Of course, third order moments of this presumed pdf
being identically null, this approximation will be questionable in inhomogeneous flows.

Accordingly to Eq. (52), the pdf of the ingoing half-flux of particles can be written as:
g�p ðx; c; tÞ ¼ jcp � njf
^

fpðx; c; tÞ for cp � n < 0: ð56Þ
Indeed, g�p ðx; c; tÞdcdt dS is the probable number of ingoing particles with a ‘‘velocity’’ u 2 ½c; cþ dc� passing
through dS during dt.

The ingoing particle flux dN�p across an elementary surface dS of C during dt associated to this half-flux can
be calculated in terms of Eulerian variable values at the surface (see Section 5.2):
dN�p ¼
Z

cp�n<0

g�p ðxC; c; tÞdcdS dt; ð57Þ

¼ np ðU p � nÞg
U p � nffiffiffiffiffiffiffi

Rnn
pp

p !
þ

ffiffiffiffiffiffiffi
Rnn

pp

q
h

U p � nffiffiffiffiffiffiffi
Rnn

pp

p !" #
dS dt; ð58Þ
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where Rnn
pp is the particle kinetic normal stress (in the direction of n) and the functions g and h are defined by:
�������

g : x! 1
2

1þ erf xffiffi
2
p
� h i

;

h : x! 1ffiffiffiffi
2p
p exp � x2

2

� 
:

ð59Þ
dN�
p ¼ dN�p =j then gives the average number of numerical particles to inject at each time step. The effective

amount is calculated by taking the integer part and comparing the fractional part to a random number to de-
cide if another particle is injected.

The variables associated with these particles need then to respect Eq. (56) on average. The simulation of the
pdf (56) is not straightforward and led us to use a rejection method (Press et al., 1997). The underlying idea is
to find a simple pdf gsup

p which is a majorant of the desired pdf. The phase space is then oversampled using gsup
p

and unfitted samples for (56) are rejected. In practical, a maximum speed of injection vmax is chosen according
to the physics of the flow and the orientation of C. The majorant pdf is then taken as:
gsup
p ¼ vmaxf

^

fpðx; c; tÞ: ð60Þ

This choice of the majorant pdf is motivated by the simple form that takes the rejection method as well as the
possibility to simulate gsup

p by a Choleski decomposition of R (as R is by definition positive symmetric). Indeed,
the Gaussian form of gsup

p enables to compute random variables following gsup
p from a simple set of normal

Gaussian independent random variables multiplied by the left part of the Choleski decomposition.
The algorithm is then sketched for each injected numerical particle as:

(1) compute random fluctuating velocities following gsup
p : ðu00p; u00f Þ,

(2) compare �u00p � n with vmaxz, where z is a random number computed following a uniform law on [0, 1]:
(a) if �u00p � n P vmaxz, the particle is effectively injected in Xlag with the velocities ðU p þ u00p; eU f þ u00f Þ and

advanced in time for a random duration dt	 2 ½0; dt�,
(b) if �u00p � n < vmaxz, the particle is not injected with these velocities and a new process takes place for

that particle.
5.2. Boundary conditions for the Eulerian approach

Similarly with (46), the boundary condition (47) is represented via the other half of the kinetic fluxes across C.
However, reasoning in terms of half-fluxes in the Eulerian approach is not sufficient as the physical phenomena
are expressed in terms of total fluxes (see Eq. (26) for example). Moreover, usually Eulerian calculations are per-
formed using finite volume schemes. It thus seems natural to incorporate the total fluxes into the model. To inte-
grate the coupling in the Eulerian approach we then reconstruct the total fluxes across C as the sum of the ingoing
and outgoing half-fluxes. The outgoing half-fluxes are given by the Lagrangian simulation while the ingoing ones
need to be given. In order to avoid additional stochastic noise (which comes from the outgoing half-fluxes), these
ingoing half-fluxes are explicitly calculated from the Eulerian data (assuming a joint pdf of the Richman’s
extended form) instead of being given by the Lagrangian simulation. These calculations are carried through
successive changes of variables and give in the most general case:
F�
C ðnpÞ � n ¼ np ðU p � nÞg

U p � nffiffiffiffiffiffiffiffiffiffiffi
Rpp;nn

p !
þ

ffiffiffiffiffiffiffiffiffiffiffi
Rpp;nn

p
h

U p � nffiffiffiffiffiffiffiffiffiffiffi
Rpp;nn

p !" #
; ð61Þ

F�
C ðU iÞ � n ¼ UiF

�
C ðnpÞ � nþ npKikQk1Rpp;nng

Up � nffiffiffiffiffiffiffiffiffiffiffi
Rpp;nn

p !
; ð62Þ

F�
C ðRijÞ � n ¼ RijF

�
C ðnpÞ � nþ npðKikQk1ÞðKjlQl1ÞR3=2

pp;nnh
U p � nffiffiffiffiffiffiffiffiffiffiffi

Rpp;nn

p !
: ð63Þ
K and Q�1 are a change-of-coordinates matrices related to the diagonalization of the operator R (see

Appendix A):
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global coordinates ! C coordinates ! velocity eigenvectors

ðu; v;wÞ ðu0; v0;w0Þ !Q
�1

ðu	; v	;w	Þ

ðx; y; zÞ !K ðn; t1; t2Þ ðn; t1; t2Þ

ð64Þ
These half-fluxes are then summed with the outgoing half-fluxes computed in the Lagrangian simulation.
These are simply evaluated over the outgoing particles by:
Fþ
C ðWÞ � n ¼

j
dS dt

X
i

Wi: ð65Þ
The total flux FCðWÞ � n is then simply the sum of the two previous half-fluxes, and is taken into account in the
finite-volume discretization scheme at the boundary surface of the Eulerian region as following. For example
with a normal vector in the direction xk and Up � n ¼ 0, the coupling is then made by linking the fluxes of the
dispersion term D at the coupling surface to the total fluxes at this surface:
hwu00p;kipjC ¼
1

np

FCðWÞ � n: ð66Þ
6. Validation test case

The validation of the proposed hybrid Eulerian–Lagrangian method with the coupling methodology pre-
sented in Section 5 is carried out for the case of an homogeneous turbulent shear flow described below.
The reference results are computed from LES/DPS simulations (Laviéville, 1997) carried out with and without
collisions for about 600,000 discrete particles suspended in a periodic cubic box ðL ¼ 0:192 mÞ with the phys-
ical properties resumed in Tables 2 and 3. This test-case has served in various model validations (Laviéville
et al., 1997; Zaichik, 1999; Berlemont et al., 2001; Moreau et al., 2003), and the reader should refer to these
references for complementary information about the corresponding results. Two types of simulation were car-
ried with different particle density (qp ¼ 50 kg m�3 and qp ¼ 100 kg m�3). As the results give the same trend for
both particle density, figures will mainly show results for the case qp ¼ 100 kg m�3.

The initial conditions are derived from statistically converged LES/DPS in a forced homogeneous isotropic
gas-particle turbulent flow (Table 4). At time t ¼ 0, the mean shear is forced for both phases with a uniform
2
e phase

e properties

e diameter, dp ðmÞ 656 · 10�6

e density, qp (kg m�3) 50, 100
number density, np (m�3) 8.46 · 109

3
hase

roperties

ensity, qf (kg m�3) 1.17
atic viscosity, mf (m2 s�1) 1.47 · 10�5

velocity gradient, Sf (s�1) 50

4
conditions

geneous isotropic turbulence conditions

gian time scale, st
fpðsÞ 36.7 · 10�3

urbulent energy, kf (m2 s�2) 0.12
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Fig. 2. Configuration of the Lagrangian box with shear flow.
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fluid mean velocity gradient Sf and a particle mean velocity gradient Sp ¼ Sf . For later times the simulations
were run independently for the two approaches with kf and kf=ef provided by LES (with an adimensional
Lagrangian time step Sf dtlag ¼ 3:125� 10�3 and an Eulerian time-step dteul ¼ 5dtlag). The stochastic Lagrang-
ian method was used in the periodic cubic box (Fig. 2), the periodicity inside the box referring to the fluctu-
ating motion. Thus the particles that cross through C1ðy ¼ y1Þ or Crðy ¼ yr ¼ y1 þ LÞ are re-injected through
the other surface with respect to the mean velocity gradient Sp.

In a first step we verify, a minima, that we recover known results about the two approaches, in particular
that the approaches can provide a good prediction of the behavior of the dispersed phase concerning the par-
ticle kinetic stress tensor (Laviéville et al., 1997; Moreau et al., 2003). Fig. 3 presents time-development of the
particle kinetic stresses tensor and anisotropy tensor without collisions for the case qp ¼ 100 kg m�3. Particle
kinetic stress anisotropy tensor is defined as:
Fig. 3.
symbo
(s: Rp
bpp;ij ¼
Rpp;ij � 2=3q2

pdij

2=3q2
p

: ð67Þ
The box is divided in 50 identical cells in the normal direction (direction of the fluid mean velocity gradient)
and with almost 30000 numerical particles ðj ¼ 20Þ. In each cell the average over the set of particles gives the
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On the left: time-development of the particle kinetic stresses without collisions. Comparison between stochastic Lagrangian (empty
ls) and Eulerian (lines) predictions with LES/DPS results (filled symbols). On the right: time-development of the anisotropy tensor,
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macroscopic quantities and the results given come from an average over the cells. As shown by Moreau et al.
(2003), results from LES/DPS, stochastic Lagrangian and second-order moment simulations are in a very
good agreement.

One can note that neither stochastic Lagrangian nor Eulerian approaches can reproduce the small differ-
ence in the normal and spanwise directions (square and diamonds). The particle kinetic stress in the longitu-
dinal direction is also overestimated (Moreau et al., 2003) and present a slight difference between the two
approaches. This difference between stochastic Lagrangian and Eulerian results stem from two effects. On
one hand, the closure of the drag terms in the Eulerian approach induce some bias in the treatment of the
interaction between the fluid and the particle phase. On the other hand, the initialization of the Eulerian sim-
ulation is made according to the steady isotropic homogeneous flow (Table 4) and thus is slightly different
from the initialization of the Lagrangian simulation due to the limited number of numerical particles in the
box. However, stochastic Lagrangian and Eulerian results are nearly identical, highlighting the consistency
between these two approaches.
7. ‘‘A priori’’ half flux validation

In order to check the consistency between the chosen approaches as well as validate the calculations of our
theoretical half-fluxes, we represent in Figs. 4 and 5 the mean values of the number of particle half-flux, mean
particle velocity, particle–particle and particle-fluid correlation tensor components for ‘‘outgoing’’ particles in
the case of the periodic box ðqp ¼ 100 kg m�3Þ. ‘‘Outgoing’’ particles are the particles which overpass the left
side of the box C1, before being re-injected (with respect to the mean velocity gradient) on the other side of the
box. Because of periodicity, they could also be considered, in terms of fluctuating motion, as ingoing particles
passing through Cr.

The mean values over these outgoing particles can be related to the outgoing half-fluxes:
Fig. 4.
with m
Time-d
hwicp�nh0;y¼y1
¼defhwi� ¼ F�

C ðwÞ � n
F�

C ðnpÞ � n
with n ¼ �ey : ð68Þ
The theoretical values of these outgoing half-fluxes can be expressed by Eqs. (61)–(63), reminding that theses
expressions were obtained under the hypothesis of a Gaussian form of the joint fluid-particle pdf. In that case,
these ratios of half-fluxes can be expressed in terms of functions of the moments calculated in the simulations
(see Appendix A):
hwi� ¼ /wðnp;U ;RÞ: ð69Þ
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These theoretical functions will be referred in the figures as ‘‘presumed pdf values’’, and can be expressed
either with the measured mean moments in the Lagrangian simulation or with the calculated moments in
the Eulerian simulation.

We investigated the case where the side of the box has been divided by 10 and the weight by 1000
ðj ¼ 0:02Þ, allowing to preserve the total number of numerical particles while the number of outgoing particles
is increased. In the present simulation, about 28% of the initial particles have passed through the left surface at
the end of the simulation. The results for the number of outgoing numerical particles are presented averaged
over 5 Lagrangian time-steps but nonetheless present a great variance due to the small number of outgoing
numerical particles per time step, but an average over 100 Lagrangian time-step gives good agreement with
presumed pdf values. This phenomenon is still present for other moments but are smoothed by a 10 time-step
average.

The results represented in Figs. 4 and 5 show nearly exact agreement with the Gaussian-pdf half-fluxes eval-
uated with the measured moments, even at the beginning of the simulation at its most non-equilibrium state
(in terms of unsteadiness of the anisotropy tensor bpp;ij). This result should be highlighted as, by formally
extending Richman’s form to account for the fluid and correlated fluctuating motion (whereas previous works
only account for the particle fluctuating motion), we are able to deal with a ‘‘simple’’ second-order joint-pdf in
near-equilibrium regions of the flow. Our hybrid method thus seems appropriate as the coupled approaches
are consistent one with another.
8. ‘‘One-sided’’ injection validation

As an intermediate validation of the proposed coupling strategy, ‘‘one-sided’’ simulations have been made
on the basis of the preceding paragraphs. The term ‘‘one-sided’’ should be understood as the simulation of the
boundary condition (46). We now consider the Lagrangian box with particles injected through the right sur-
face Cr according to the presumed Gaussian pdf whose moments are given by an Eulerian calculation done
simultaneously but independently. The ‘‘outgoing’’ particles passing through Cl are this time not re-injected
through Cr. It can be convenient to take an Eulerian time step equal to several Lagrangian time steps for
numerical purposes (for example when using implicit scheme in the Eulerian calculation). To account for this
desired effect the particles were injected in the box during 5 Lagrangian time steps with the same presumed pdf
(i.e. mlag ¼ 5 and meul ¼ 1, see 9). However, the results show no significant sensibility to the time at which the
Eulerian moments are taken (i.e. results are the same with Eulerian moments taken at time i � dteul

or ðiþ 1Þ � dteulÞ.
Fig. 6 compares the preceding periodic stochastic simulation with a onesided simulation in the time-devel-

opment of the particle kinetic stresses ðqp ¼ 100 kg m�3Þ, the results being the same concerning the correlated
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and seen fluid motion. The renewing of the particles is nearly identical as in the periodic case (28%) and the
results show no significant divergence between periodic and one-sided simulations. The one-sided approach
tends to slightly overestimate the particle kinetic energy due to the previously observed overestimation in
the Eulerian calculation compared to the stochastic Lagrangian calculation for the case qp ¼ 100 kg m�3

(Fig. 3).
Fig. 6 also shows the mean ingoing values of the particle kinetic stress tensor simulated by the rejection

method compare to the presumed pdf values (with n ¼ ey and U p � n ¼ 0). This time the results follow tightly
the Eulerian prediction, which is reassuring as these are the fluxes we intended to simulate. The stochastic
noise is comparable to the periodic case which means that, despite the known great variance of rejection meth-
ods, sufficient amount of particles are injected during the 5 time steps to represent the firsts moments of the
presumed pdf. These results validate our coupling methodology as well as our injection method, and it should
be highlighted that the half-fluxes of the moments of order 2 are very well predicted under our hypothesis of a
Gaussian joint fluid-particle pdf whereas their total fluxes are null.

9. Full hybrid Eulerian–Lagrangian method validation

The coupling methodology is applied is this section to the previous case in a fully Hybrid Eulerian–
Lagrangian Method (HELM). In this precise case the total fluxes through the coupling surface should be null
concerning number density and second-order moments. However, the ingoing and outgoing half-fluxes are far
from null. Only their sum should be zero, which is not exactly the case in our simulations due to stochastic
noise. Moreover, it is interesting to note that there still exists a momentum flux (responsible of the production
of the kinetic stress Ruv

pp and Ruv
fp), thus the behavior of the method in this simplified case is a good indicator of

the possibilities of the method in more complex flows.
The coupled problem is resolved with a time-marching algorithm using the following time-loop:

(1) Solve the Lagrangian equation set given in Table 1 for mlag time-steps dtlag with:

(a) regular Lagrangian boundary conditions on oX \ Xlag,
(b) random injection of discrete particle following the presumed ingoing Eulerian pdf at the interface,
(2) Compute the outgoing Lagrangian half-fluxes Flagþ
C ,

(3) Solve the Eulerian equation set given in Table 1 for meul time-steps dteul with:

(a) regular Eulerian boundary conditions on oX \ Xeul,
(b) flux boundary conditions obtained from the outgoing Lagrangian half-fluxes Flagþ

C combined with
the presumed ingoing Eulerian half-fluxes Feul-

C ,
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(4) Compute the particle and fluid velocity moments at the interface needed to presume the ingoing Eulerian
pdf at the interface

where, for consistency, mlag dtlag ¼ meul dteul.
As shown in Fig. 7, our Lagrangian box of Section 6 is divided into Xlag and Xeul, where Xeul is extracted

from the coupling surface with the desired length such that Llag þ Leul ¼ L.
We define the volume ratio of the simulation by:
g ¼
V Xlag

V Xeul
þ V Xlag

¼ Llag

L
: ð70Þ
As this volume ratio decreases, the coupling process in the Lagrangian domain will become more and more
preponderant (as the ratio dN�

p =Np becomes larger). This statistical bias is not present in the Eulerian do-
main and therefore the influence of the coupling is constant with g. Moreover, the terms stemming from
the dispersion are negligible in comparison to the drag terms P for the kinetic stress Eq. (25).

Let us first consider the behavior of the flux splitting in the fully-coupled case ðqp ¼ 100 kg m�3Þ. Fig. 8
present the time-development of several particle moment half-fluxes and the related Eulerian flux boundary
conditions, given for each Eulerian time-step (we recall that the injection of numerical particles in Xlag is con-
stant over the 5 Lagrangian time-steps corresponding to an Eulerian one Section 8). The results for the dis-
persion term were filtered over a time Dt ¼ 6dteul ¼ 30dtlag such that DtSf 
 1=10, thus representing a
‘‘mean’’ behavior of the flux-splitting, but at a time-scale smaller than the characteristic time-scale of behavior
of the moments (which can roughly be taken as 1/Sf from Fig. 3). The results show excellent agreement with
theoretical expectations despite the great variance of the stochastic Lagrangian data. This variance in the cal-
culation is only function of the number of numerical particles passing through the coupling surface per time-
step. For example, results given in Fig. 8 are obtained with approximately 30 numerical particles passing
through the surface ðdS ¼ L2Þ per Eulerian time-step. This implies that with as low as 15 numerical particles
passing through the surface per Eulerian time-step we can represent in ‘‘mean’’ the behavior of the half-fluxes
and the related dispersion terms.

Fig. 9 compares the time-evolution of the kinetic stresses in the HELM simulation to LES/DPS results for
the two different particle density values. Lagrangian kinetic stresses given by the HELM simulation should be
understood as averaged over the whole Lagrangian region, whereas Eulerian results are given for the cell at
the center of Eulerian region. The hybrid method gives satisfactory results in both cases. In particular the
influence of the particle properties on kinetic stress development is well captured. Fig. 9 shows that increased
inertia of the particles leads to increased anisotropy in the particle fluctuating motion, even though the
fluid phase properties remain identical. The proposed methodology, even with an unsteady exchange of
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information between the two approaches (Fig. 8), preserves the dynamic behavior of the two coupled
approaches.

The influence of g in the stochastic Lagrangian calculation is presented in Fig. 10. It represents the time-
evolution of the kinetic stresses averaged in the Lagrangian part for different g ðqp ¼ 100 kg m�3Þ. As we have
kept j as in the periodic case, the case g ¼ 0:1 is in theory the same as Section 8, but with 10 times less par-
ticles. The average process is then not so smooth. Moreover, the coupling is done by taking into account the
fluxes given by the sum of the half-fluxes of the left figures of Fig. 8 (which means not filtered over the time Dt),
introducing large stochastic noise in the calculation of the flux. Nevertheless, the Hybrid Eulerian–Lagrangian
Method gives nearly identical results as shown by Fig. 6.
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Fig. 11 represents the evolution in the normal direction of the particle density and kinetic stresses in the case
of a volume ratio g ¼ 0:3 at the end of the simulation ðSf t ¼ 5Þ for the case qp ¼ 100 kg m�3. These are the
variables that have, in theory, null total fluxes. Fig. 8 shows that this is not perfectly true for the kinetic con-
straints, but the values in Xlag do not influence the values in Xeul due to the preponderance of the drag terms in
the behavior of the kinetic stresses. For the mass flux, however, the flux is not entirely transparent in the Eule-
rian simulation. This comes from the stochastic oscillation of the total mass flux calculated in our simulation
(more precisely from Fþ

C ðnpÞ � n) which propagates in Xeul. However, the fluctuations in the profile of the num-
ber density in Xeul being a lot attenuated compare to those in Xlag Fig. 11 shows spectacular results in favor of
the Hybrid Eulerian–Lagrangian Method.

These results are also enlightened by Figs. 8 and 12 which prove the capacity of the method to deal with
non-zero fluxes as in the case of momentum fluxes. The velocity profile is very well predicted throughout the
entire domain, with no discontinuities at the interface (the change of gradient is due to statistical error in the
last Lagrangian cell, which can be seen with a linear regression on the left points of the zoom). This is corrob-
orated with the excellent agreement at the interface in Fig. 11 of the kinetic stress Rpp;uv. Thus the model proves
its ability to integrate non-zero fluxes, giving a good hope to deal with inhomogeneous flows as long as the
coupled approaches are consistent.

10. Conclusions

A new approach to tackle turbulent gas-particle flows based on an Hybrid Eulerian–Lagrangian Method
has been presented. Stochastic Lagrangian and Eulerian approaches are derived from the same joint fluid-par-
ticle pdf transport equation. Then, their complementarity is used in the frame of an hybrid method based on
the separate application of each approach in two adjacent domains and their coupling at the interface via flux
boundary conditions. The coupling methodology is based on a representation of the flow in the Eulerian
region as a presumed joint pdf of an anisotropic Gaussian form, allowing explicit calculation of the half-fluxes
and particle injection in the Lagrangian region. This methodology is then validated in the test case of turbulent
homogeneous shear flow, which shows large anisotropy in the particle fluctuating motion. The half-fluxes, up
to the second order, are proven to be well-predicted by a Gaussian hypothesis on the joint pdf. The method
also shows excellent results in the consistency of the two coupled approaches, as well as a good behavior at the
interface. All these results validate the Hybrid Eulerian–Lagrangian Method as a potential powerful tool to
simulate turbulent gas-particle flows.

The work in progress is the application of the hybrid method in confined flows (particle-laden channel
flows, for example) where we expect true benefits by using the moment approach in the core of the flow
and the stochastic Lagrangian one in the near-wall region to account for non-equilibrium effects of the particle
velocity pdf (Knudsen effects) and complex particle–wall interaction mechanisms (rough wall bouncing, depo-
sition, splashing . . .). An important issue in the development of a hybrid method that has not been discussed in
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this article is the location of the coupling interface. In the test case presented here, this location is not an
important matter as the continuum (Eulerian) approach is valid in the whole spatial domain. Choosing the
right place to locate this interface in inhomogeneous gas–solid flow is linked to the estimation of the local level
of ‘‘non-equilibrium’’ of the flow (Tiwari, 1998) which is related to the validity of the continuum approach.
Another important issue is the validity of the presumed pdf form given at the interface by Eq. (55) in the case
of inhomogeneous flows. It has been pointed out that the presumed Richman’s form fails to take into account
non-zero triple velocity correlations (but nonetheless can induce non-zero kinetic stress half-fluxes). As these
correlations are present in inhomogeneous flows and are related to the transport of the particle kinetic stresses,
an extension of this presumed form will have to be considered (based for example on a Grad expansion of the
pdf). Accordingly, taking into account inhomogeneity will result in new expressions for the half-fluxes.

Appendix A. Expressions of the presumed pdf values of outgoing fluxes

For a normal vector n ¼ �ey , with no normal mean velocity ðUp � n ¼ 0Þ, the theoretical values can be

expressed by dividing Eqs. (62) and (63) by (61). By noting that h Up�nffiffiffiffiffiffiffiffi
Rpp;nn

p
� �

¼ 1ffiffiffiffi
2p
p ; g Up �nffiffiffiffiffiffiffiffi

Rpp;nn

p
� �

¼ 1
2

and Rpp;nn ¼ Rpp;vv the explicit expressions of the mean values over the outgoing particles are:
hU ii� ¼ Ui þ
ffiffiffi
p
2

r
ðK � QÞi1

ffiffiffiffiffiffiffiffiffiffiffi
Rpp;vv

p
; ðA:1Þ

hRiji� ¼ Rij þ ðK � QÞi1ðK � QÞj1Rpp;vv: ðA:2Þ
In the case n ¼ �y, a change-of-coordinates matrix K can be chosen as:
K ¼

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 �1 0 0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: ðA:3Þ
We this choice of change-of-coordinates matrix we now construct the matrix , and the vector v0:
D ¼ tK � R�1 � K; ðA:4Þ
v0 ¼ K � v: ðA:5Þ
The matrix Q is then taken to be the change-of-coordinates matrix from the surface frame to the eigenvectors
one, while D is the diagonal matrix composed of the eigenvalues ri:
v0 ¼ Q � v	; ðA:6Þ
tv0 �,:v0 ¼ tv	 � D � v	; ðA:7Þ
D ¼ diagðriÞ: ðA:8Þ
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Laviéville, J., 1997. Simulations numériques et modélisation des interactions entre l’entraı̂nement par la turbulence et les collisions
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